ar X iv : q - a lg / 9 60 90 08 v 1 9 S ep 1 99 6 A three - parameter deformation of the Weyl - Heisenberg algebra : differential calculus and invariance ∗

ثبت نشده
چکیده

We define a three-parameter deformation of the Weyl-Heisenberg algebra that generalizes the q-oscillator algebra. By a purely algebraical procedure, we set up on this quantum space two differential calculi that are shown to be invariant on the same quantum group, extended to a ten-generator Hopf-star-algebra. We prove that, when the values of the parameters are related, the two differential calculi reduce to one that is invariant under two quantum groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q - a lg / 9 51 10 09 v 2 1 7 D ec 1 99 5 h - deformation of GL ( 1 | 1 )

h-deformation of (graded) Hopf algebra of functions on supergroup GL(1|1) is introduced via a contration of GL q (1|1). The deformation parameter h is odd (grassmann). Related differential calculus on h-superplane is presented.

متن کامل

ar X iv : q - a lg / 9 70 60 09 v 1 1 1 Ju n 19 97 q - Deformation of the Krichever - Novikov Algebra

Using q-operator product expansions between U (1) current fields and also the corresponding energy-momentum tensors, we furnish the q-analoques of the generalized Heisenberg algebra and the Krichever-Novikov algebra.

متن کامل

ar X iv : s ol v - in t / 9 90 60 08 v 1 1 5 Ju n 19 99 PARACONFORMAL STRUCTURES AND INTEGRABLE SYSTEMS

We consider some natural connections which arise between right-flat (p, q) para-conformal structures and integrable systems. We find that such systems may be formulated in Lax form, with a " Lax p-tuple " of linear differential operators, depending a spectral parameter which lives in (q − 1)-dimensional complex projective space. Generally, the differential operators contain partial derivatives ...

متن کامل

ar X iv : q - a lg / 9 60 10 10 v 1 1 1 Ja n 19 96 UAHEP 956 November 1995 TWO - PARAMETER DEFORMATION OF THE POINCARÉ ALGEBRA

We examine a two-parameter (, λ) deformation of the Poincarè algebra which is covariant under the action of SLq(2, C). When λ → 0 it yields the Poincarè algebra, while in the → 0 limit we recover the classical quadratic algebra discussed previously in [1], [2]. The analogues of the Pauli-Lubanski vector w and Casimirs p 2 and w 2 are found and a set of mutually commuting operators is constructed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996