ar X iv : q - a lg / 9 60 90 08 v 1 9 S ep 1 99 6 A three - parameter deformation of the Weyl - Heisenberg algebra : differential calculus and invariance ∗
ثبت نشده
چکیده
We define a three-parameter deformation of the Weyl-Heisenberg algebra that generalizes the q-oscillator algebra. By a purely algebraical procedure, we set up on this quantum space two differential calculi that are shown to be invariant on the same quantum group, extended to a ten-generator Hopf-star-algebra. We prove that, when the values of the parameters are related, the two differential calculi reduce to one that is invariant under two quantum groups.
منابع مشابه
ar X iv : q - a lg / 9 51 10 09 v 2 1 7 D ec 1 99 5 h - deformation of GL ( 1 | 1 )
h-deformation of (graded) Hopf algebra of functions on supergroup GL(1|1) is introduced via a contration of GL q (1|1). The deformation parameter h is odd (grassmann). Related differential calculus on h-superplane is presented.
متن کاملar X iv : q - a lg / 9 70 60 09 v 1 1 1 Ju n 19 97 q - Deformation of the Krichever - Novikov Algebra
Using q-operator product expansions between U (1) current fields and also the corresponding energy-momentum tensors, we furnish the q-analoques of the generalized Heisenberg algebra and the Krichever-Novikov algebra.
متن کاملar X iv : q - a lg / 9 70 90 01 v 1 1 S ep 1 99 7 Bilinear identity for q - hypergeometric integrals
متن کامل
ar X iv : s ol v - in t / 9 90 60 08 v 1 1 5 Ju n 19 99 PARACONFORMAL STRUCTURES AND INTEGRABLE SYSTEMS
We consider some natural connections which arise between right-flat (p, q) para-conformal structures and integrable systems. We find that such systems may be formulated in Lax form, with a " Lax p-tuple " of linear differential operators, depending a spectral parameter which lives in (q − 1)-dimensional complex projective space. Generally, the differential operators contain partial derivatives ...
متن کاملar X iv : q - a lg / 9 60 10 10 v 1 1 1 Ja n 19 96 UAHEP 956 November 1995 TWO - PARAMETER DEFORMATION OF THE POINCARÉ ALGEBRA
We examine a two-parameter (, λ) deformation of the Poincarè algebra which is covariant under the action of SLq(2, C). When λ → 0 it yields the Poincarè algebra, while in the → 0 limit we recover the classical quadratic algebra discussed previously in [1], [2]. The analogues of the Pauli-Lubanski vector w and Casimirs p 2 and w 2 are found and a set of mutually commuting operators is constructed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996